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The basic ideas in the theory of quantum mechanics on phase space are illustrated
through an introduction of generalities, which seem to underlie most if not all such for-
mulations and follow with examples taken primarily from kinematical particle model
descriptions exhibiting either Galileian or Lorentzian symmetry. The structures of fun-
damental importance are the relevant (Lie) groups of symmetries and their homoge-
neous (and associated) spaces that, in the situations of interest, also possess Hamiltonian
structures. Comments are made on the relation between the theory outlined and a recent
paper by Carmeli, Cassinelli, Toigo, and Vacchini.
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1. INTRODUCTION

The formulation of quantum mechanics on phase space, having origins
as early as the 1930s (Weyl, 1928; Wigner, 1932), underwent something of a
resurgence in the late 1970s and early 1980s. A number of concepts, tools,
and elements introduced in the 1950s and 1960s in the theory of quantum
measurement (operator-valued measures with non-projector values being perhaps
the most significant), which today play an indispensible role in the context
of quantum computation and quantum information, have played an equally
critical role in theories of quantum mechanics on phase space. The concepts of
positive operator-valued measure (POVM) and informational completeness (of
a collection of observables) are especially worth mentioning in the phase-space
theories of quantum mechanics.
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The present paper is an amalgam of the talks by the two authors, and is aimed
at illustrating the basic ideas in the theory of quantum mechanics on phase space
through a “gentle” introduction of generalities, which seem to underlie most, if
not all, such formulations.

As might be expected in any treatment of particle models embodying non-
relativistic or relativistic kinematics, the structures of fundamental importance are
the relevant (Lie) groups of symmetries and their respective homogeneous (and
associated) spaces which, in the situations of interest, also possess Hamiltonian
structures.

Quantum mechanical systems are characterizable in terms of their kinemat-
ical symmetries that, in their most basic form, are either Galileian or Lorentzian,
depending whether the system is required to incorporate non-relativistic or
relativistic principles. Since in quantum theory, the description (and construction)
of what may be called multi-particle Hilbert spaces derives (by suitable
tensor products) from single-particle formulations, one concentrates on these
elementary systems. In Wigner’s (1939) formulation in the relativistic context
and Lévy-Leblond’s (1963) non-relativistic counterpart, these are associated with
irreducible, unitary representations on the Hilbert space of the system of the
appropriate kinematic group: the Lorentz group or the Galilei group, or the related
inhomogeneous group (actually the 11-dimensional extended version in the
case of the Galilei group in consequence of the fundamental work of Bargmann
(1954)). In both situations, the physical elementary systems are determined by
two real parameters, namely non-negative mass m and spin j taking values that are
non-negative half-integer multiples of Planck’s fundamental constant. It is now the
physical interpretation that provides the guide through consideration of the classi-
cal mechanical phase spaces associated with the elementary, irreducible particle
models. Since the pioneering works of Souriau (1970) and Kostant (1970), it has
been recognized that it is the symplectic homogeneous spaces of the appropriate
kinematical group that provide the correct phase-space descriptions, and that a
particular model of the phase-space picture (that embodies the covariance sym-
metry of the kinematical group) arises either from the co-adjoint representation
of the group on the dual of its Lie algebra or suitable extensions of the co-adjoint
representation approach to take account of topological aspects such as non-trivial
group cohomology as in the case of the inhomogeneous Galilei group.

These assumptions are taken to be basic, and one proceeds to note the
consequences.

Note that the phase-space formulation of quantum mechanics has little if
anything to do with the theory of geometric quantization that seeks, through the use
of complex polarizations, to reduce the phase-space description to one involving a
locally-Poisson-commuting collection of basic coordinates. “Quantum Mechanics
on Phase Space” is, in contrast, prepared to accept the need to “live” with phase
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space as a fundamental aspect of the description and not attempt to derive it or do
away with it from a purely space-time-based approach.

2. PHASE SPACES AND GROUPS

From classical experiments, one learns that classical (Newtonian) equations
of motion are invariant under translations, boosts (relative velocity transforma-
tions between inertial [Galileian] reference frames), and rotations. Prior to 1887,
these were invariably viewed to generate the group of Galileian transformations
on space-time. However, since the Michaelson and Morley (1886, 1887) exper-
iment, and the subsequent analysis of Voigt (1887), Lorentz (1886, 1892), and
Hertz’s (1888) clarification of Maxwell’s equations, the analysis of FitzGerald
(1891), Poincaré (1905, 1906), Einstein (1905a,b, 1911, 1916) and Minkowski
(1908, 1909, 1910, 1915), these space-time translations, boosts, and rotations
were henceforth interpreted as the generators of the group of Lorentz transfor-
mations on either energy–momentum space or on space-time. These transforma-
tions generated the entire group (known either as the inhomogeneous Lorentz
group or the Poincaré group) from those transformations acting on an arbitrarily
small neighborhood of any point (i.e. those transformations in an arbitrarily small
neighborhood of the identity in the group). Transformations infinitesimally near
the identity transformation form a vector space (the Lie algebra of the group) on
which a non-associative operation (the Lie bracket) is defined. This was already
well known at the time to mathematicians (Lie, Poincaré, and others). Thus, we
have the following discussion on classical mechanics and classical experiments.

• Classical experiments reveal the relevant kinematical groups.
The lesson learned through the efforts of mathematicians over the last
50 years is stated as follows.

• Classical mechanics is describable mathematically on a space with a Pois-
son bracket, a phase space, or more particularly on a symplectic manifold,
which possesses a closed, non-degenerate 2-form on it. Furthermore, the
relevant Galilei or Poincaré group acts on this space in such a way as to
preserve the Poisson bracket (acts “symplectically”). A necessary conse-
quence of this set-up is that so-called “conjugate variables” arise naturally;
these are coordinates on the phase space which realize the canonical skew-
symmetric form of the Poisson bracket.

With the experience of the Galilei and Poincaré groups, one may abstract this
formulation to the setting of the action of a Lie group on any phase space.

The group G, being a Lie group, possesses an associated Lie algebra g that
may be thought of as the collection of all left-invariant vector fields on G. There
is a formal invertible process of exponentiation that associates an element of the
group (near the identity) to any element of the Lie algebra sufficiently near the
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origin (zero). One may thus go from the Lie algebra to the Lie group, and vice
versa. In what follows it is essential that g is a finite-dimensional vector space.
If ∧ designates the anti-symmetric tensor product on g then one may form the
skew-symmetric tensor algebra ∗(g) over g consisting of elements of various
types, namely: R, g, g ∧ g, g ∧ g ∧ g, etc. Let their duals be denoted by g∗, etc.
and note that g∗ may be thought of as the collection of all left-invariant 1-forms
on G, g∗ ∧ g∗ as the left-invariant 2-forms on G, and so on. One defines the
coboundary operator δ

R
δ0−→ g∗ δ1−→ (g ∧ g)∗ −→ · · ·

as follows. Let (Ai) be a basis of g and let (ωi) be the associated dual basis of g∗ so
that ωi(Aj ) = δi

j . The structure constants of g, defined relative to the basis (Ai),
are determined by the Lie bracket relations: [AiAj ] = �kC

k
ijAk . The R in the

aforementioned sequence can be considered to be the collection of left-invariant
functions on the group G, which is assumed to be connected, so that the R may be
thought of as the left-invariant 0-forms f on the group. We define

δ0f = 0

as an element of g∗. Now, thinking of the ωi as left-invariant 1-forms one finds
that the Maurer-Cartan equations hold: dωk = − 1

2�i,jC
k
ijω

i ∧ ωj . We then define

δ1ω
k = −1

2

∑
i,j

Ck
ijω

i ∧ ωj

recognizing that this 2-form is actually in (g ∧ g)∗. One extends this expression
for δ1 linearly and thereby obtains the linear map g∗ δ1−→ (g ∧ g)∗. Making use of
the skew-derivation property for δ2

δ2(λ ∧ µ) ≡ (δ1λ) ∧ µ − λ ∧ (δ1µ),

for λ,µ ∈ g∗. one defines δ inductively.
Letting

Z2(g) ≡ {ω ∈ (g ∧ g)∗ | δ2(ω) = 0}
denote the space of closed, left-invariant 2-forms on G, for ω ∈ Z2(g), define

hω ≡ {ξ ∈ g | ω(ξ, ·) = 0}.
Then hω is a Lie sub-algebra of g and hω determines, by exponentiation, a subgroup
Hω of G. Supposing that Hω is a closed subgroup of G,

� ≡ G/Hω

is a manifold. That it is a symplectic manifold (of even dimension equal to 2m

for some integer m) follows from the fact that the 2-form ω, when factored by
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its kernel, is the pull-back of a non-degenerate closed 2-form on G/Hω. That it
is a symplectic G space follows because G acts on G/Hω by left multiplication
on left cosets: gx = g(g1Hω) = (gg1)Hω, where x = g1Hω for some g1 in G.
Since � ≡ G/Hω is a symplectic manifold, it naturally possesses a left-invariant
Liouville measure µ equal to the mth exterior power of ω.

The following result (Theorem 25.1 of Guillemin and Sternberg, 1991)
captures the essence of the need for the construction outlined earlier and
is sufficient for our purposes, but only in the context of single-particle
kinematics.

Theorem 1. Any symplectic action of a connected Lie group G on a symplectic
manifold M defines a G morphism, � : M → Z2(g). Since the map � is a G
morphism, �(M) is a union of G orbits in Z2(g). In particular, if the action of G
on M is transitive, then the image of � consists of a single G orbit in Z2(g).

In the case of the inhomogeneous Lorentz group the co-adjoint orbit con-
struction is sufficient, whereas in the case of the inhomogeneous Galilei group
one must consider the symplectic cohomology groups H 1(g) and H 2(g) which
are both non-trivial. One may consult Section 25 of Guillemin and Stenberg
(1991).

• In this fashion, one obtains ALL the single-particle symplectic spaces on
which G acts symplectically and transitively. In consequence one has a
unified mathematical picture of kinematics in the two fundamental cases
(Galileian and Lorentzian) of relevance to one-particle physics. Multi-
particle kinematics is then described by a phase space that is a Cartesian
product of the single-particle phase spaces with symplectic form equal to
the “sum” of the symplectic forms on each of the single-particle factors.
This is the “méthode de fusion” (Souriau, 1970). In other words, starting
from the symplectic action of a group on classical single-particle phase
space, one obtains all the phase spaces (single- or multi-particle) on which
G acts symplectically, in a physically meaningful way.

• The coordinates on each of these spaces can be sorted into the momentum,
position, and rotation coordinates for massive particles, or the frequency,
position, and helicity coordinates in the case of the zero mass particles. In
answer to the question: “Where does one get these canonical coordinates?”
asked by David Finkelstein (1997) this discussion provides at least a partial
answer.

• It is emphasized that the same procedure will work for any (connected)
Lie group. Thus, results for the Heisenberg group, the affine group, the de
Sitter group, etc. have been obtained.



1894 Brooke and Schroeck

3. HILBERT SPACE ASSOCIATED TO PHASE SPACE

Having chosen ω ∈ Z2(g) and obtained � = G/Hω and µ, one may form
L2

µ(�), which is a Hilbert space on which one may represent G by unitary operators
V (g)

[V (g)�](x) ≡ �(g−1x)

for � ∈ L2
µ(�). Note that it may be necessary in some situations to extend the

representation above by incorporating a phase factor.
One may define an operator A(f ), for all µ-measurable f, by

[A(f )�(x) ≡ f (x)�(x)] .

These operators on L2
µ(�) have, in the case where the f are characteristic functions

χ (	), the clear classically-motivated interpretation of localization observables in
the phase-space region 	. The collection of quantum mechanical observables
includes non-commuting operators and hence must contain operators other than
operators of the form A(f ). It will become evident that L2

µ(�) is not a Hilbert space
of fundamental importance to the description of quantum mechanical models of
elementary (i.e., irreducible), single-particle systems, but, that it is reducible into
a direct sum (or integral) of such irreducible spaces.

4. QUANTUM MECHANICAL REPRESENTATION SPACES

In the case of the inhomogeneous Galilei and Lorentz groups, the “Mackey
Machine” (Mackey, 1952, 1953) and the earlier Wigner (1939) classification are
well known to produce all continuous, irreducible, unitary Hilbert space represen-
tations and that these are characterized by the Casimir invariants in the universal
enveloping algebra of the Lie algebra. These Casimir elements are identifiable as
the physical quantities of rest mass and spin (or helicity in the mass-zero case).
For the inhomogeneous Galilei group one had to wait until the analysis of Lévy-
Leblond (1963) to achieve a similar picture physically characterized by mass and
spin.

It is the case that the well-known irreducible representation spaces for both
the Galilei and Lorentz group are “single-particle Hilbert spaces” in the usual
language of physics, and are Hilbert spaces of square-integrable functions over
single-particle momentum-energy spaces.

What we will see later is that the correspondence between “irreducible”
and “single-particle” is best elucidated within the Hilbert space constructed-over-
phase-space framework.

In what follows, U will usually denote an irreducible unitary representation
of G on an irreducible representation space, usually denoted H.
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5. PHASE SPACE AND QUANTUM REPRESENTATIONS

The critical idea is the following.
One wishes to define a linear transformation Wη from H to L2

µ(�) by

[Wη(ϕ)](x) ≡ 〈U (σ (x))η, ϕ〉
for x ∈ � = G/Hω, for all g ∈ G, and for all ϕ ∈ H, where η is a vector in H and
where σ is a (Borel measurable) section

σ : G/Hω −→ G.

The reason to define such a map is that one seeks to encode the entire content
of the state vector ϕ ∈ H into a complex-valued function on the phase space � in
a manner that is reversible. The goal is to be able to reconstruct the state from the
complex numbers [Wη(ϕ)](x) which encode it.

To ensure that the image of Wη actually lies in L2
µ(�) one must exercise some

care in the choice η. Accordingly,

(a) one selects and fixes, once and for all, a (Borel measurable) section σ :
G/Hω −→ G;

(b) one chooses a “suitable” resolution generator η ∈ H.

The trick here is to decide what “suitable” means. One says that η is admissible
with respect to the section σ if∫

�

|〈U (σ (x))η, η〉|2dµ(x) < ∞.

Assuming that η is admissible with respect to σ , one says that η is α-
admissible with respect to σ if in addition to admissibility of η one also has

U (h)η = α(h)η

for all h in Hω, where a α is a one-dimensional representation of Hω.
If η is α-admissible with respect to σ then we have what is needed to properly

define the mapping Wη from H to L2
µ(�) and to carry out the analysis needed to

describe states ϕ ∈ H by their images Wη(ϕ) in L2
µ(�) (Schroeck, 1996).

To illustrate these conditions, consider

• the case of a massive, spinless, relativistic particle (G = Poincaré group)
in which one finds (Ali et al., 1988) that η must be rotationally-
invariant under Hω = SU (2), and square-integrable over � ≡ G/Hω

∼=
R

6 ∼= R
3
position × R

3
momentum the classical phase space of a massive, rela-

tivistic spinless particle.
• the case of a massive, relativistic particle with non-zero spin (G =

Poincaré group) in which one finds (Brooke and Schroeck, 1989, and
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Brooke and Schroeck, in preparation) that η must be rotationally invari-
ant about the “spin axis” (but not necessarily invariant under all rotations
in SU (2)), i.e., invariant under Hω = double covering of O(2) ∼= stabi-
lizer in SU (2) of the spin axis, and square-integrable over � ≡ G/Hω

∼=
R

3
position × R

3
momentum × S2

spin the classical phase space of a massive, rela-
tivistic, spinning particle.

Orthogonality relations, which play a prominent role in the representation
theory of compact groups, also appear in this approach. Assuming that the vectors
ηi ∈ H, i = 1, 2 are α-admissible, one may prove the existence of a unique, pos-
itive, invertible operator C such that for all ϕi ∈ H, there holds an “orthogonality
relation” of the form (Healy and Schroeck, 1995)∫

�

〈ϕ1, U (σ (x))η1〉〈U (σ (x))η2, ϕ2〉dµ(x) = 〈Cη2, Cη1〉〈ϕ1, ϕ2〉.

Note, in the case of a compact group, the positive operator C simplifies to a positive
constant. In fact, this orthogonality relation holds with C a positive constant on
any group in which there is satisfied yet another admissibility condition—the
β-admissibility condition—for an α-admissible vector η ∈ H. An α-admissible
vector η is said to be β-admissible if, when g is any commutator of group elements
σ (x)−1σ (y)−1σ (x)σ (y), then U (g)η = β(x, y)η for some scalar function β(x, y).
The β-admissible condition holds in the case of the inhomogeneous Galilei group,
but not for the Poincaré group, suggesting that Poincaré group orthogonality
relations are not expressible with the right-hand side of the form 1

d
〈η2, η1〉〈ϕ1, ϕ2〉

for d a positive constant independent of η1, η2, and ϕ1, ϕ2; if d exists, then

1/d = ‖η‖−4
∫

�

|〈U (σ (x))η, η〉|2dµ(x).

For the sake of simplicity, we denote the closure of the image of Wη by
Wη(H) ⊂ L2

µ(�). Let P η denote the canonical projection

P η : L2
µ(�) −→ Wη(H)

and denote by Aη(f ) the mapping (Schroeck, 1996)

Aη(f ) ≡ [Wη]−1P ηA(f )Wη : H −→ H.

This is a plausible candidate for the quantum mechanical operator that corresponds
to the classical observable f. For example, for the Heisenberg group and for η =
the ground state wave function of the harmonic oscillator, then Aη(q) = Q = the
position operator, and Aη(p) = P = the momentum operator.

One can prove (Schroeck, 1996) that Aη(f ) has an operator density T η(·):

Aη(f ) =
∫

�

f (x)T η(x) dµ(x),

T η(x) ≡ |U (σ (x))η〉〈U (σ (x))η|,
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and that

Aη(1) = 1.

With this set-up one can make a number of remarks:

1) Let ρ denote any quantum density operator; i.e., ρ is non-negative and has
trace one. Then one may write ρ = �ρiP�i

, the ψi forming an orthonor-
mal set and Pψi

denoting the corresponding projection. Now, using the
interpretation of |〈U (σ ))η,ψi〉|2 as the transition probability from ψi , to
U (σ (x))η one has the quantum expectation value given by

Tr(ρAη(f )) =
∑

i

ρi

∫
�

f (x)|〈U (σ (x))η,ψi〉|2dµ(x);

i.e., the sum over the transition probabilities (Schroeck, 1996). For ex-
ample, when using a “screen” to detect a particle in a vector state given
by ψ , one idealizes the detector (the screen) as a multi-particle quantum
system consisting of identical sub-detectors. In a fixed laboratory frame
of reference a sub-detector is represented by a state vector η whose phase-
space counterpart Wηη is peaked about a reference phase-space point,
which may be referred to as “the origin.” For a fixed space-time reference
frame, one may “position” a detector at all “points” of space-time (space-
time events) exactly as Einstein located rods and clocks. Of course, one
must now position mass spectrometers (devices that measure rest-mass
in their own rest frames) and Stern–Gerlach devices at all space-time
events in addition to rods and clocks. As Einstein imagined that the rods
and clocks were also equipped (at all space-time coordinate events) in all
inertially-related space-time reference frames, so must we imagine that
our inertially-related space-time reference frames carry identical mass
spectrometers and Stern–Gerlach devices in addition to rods and clocks
(boosted relative to the rest “laboratory” frame). So, instead of rods and
clocks situated at each space-time event and at rest in inertially-related
(uniformly moving) rest frames, we must add to that imagery a more elab-
orate set of apparati. For a fixed value of momentum p there are infinitely
many pairs (m, u) such that p = mu; of course the momentum does not
alone characterize the uniform relative velocity (boost) represented by p -
one requires also the rest-mass m. The totality of all such “placements” of
detectors constitutes the phase-space distribution of detectors - the clas-
sical phase-space frame analogous to the classical space-time (Lorenz)
frame (of rods and clocks). Thus, the complete detector is composed
of sub-detectors each located at different “positions” (points of �). The
sub-detector located at “position” x ∈ �, obtained from η by a kinemat-
ical placement procedure (with the same intent as Einstein’s placement
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of identical rods and clocks at all points of space-time), is U (σ (x))η.
Since the probability that ψ is captured in the state given by U (σ (x))η
is |〈U (σ (x))η,ψ〉|2, the formula for the expectation is justified. One can-
not improve on this procedure when measuring, by quantum mechanical
means, the distribution of the particle.

2) Since T η(x) ≥ 0 and Aη(1) = 1, then ρclass(x) ≡ Tr(ρT (x)) is a classical
(Kolmogorov) probability function (Schroeck, 1996). Consequently,

quantum expectation = Tr(ρAη(f ))

=
∫

�

f (x)Tr(ρT η(x))dµ(x)

=
∫

�

f (x)ρclass(x)dµ(x)

= classical expectation.

3) Since the operators Aη(f ) enjoy the feature of the same expectation as
the “classical” observables f, one might ask whether these operators are
sufficient to distinguish states of the quantum system.

Definition 1. Prugovečki, 1977: A set of bounded self-adjoint operators
{Aβ |β ∈ I, I some index set} is informationally complete iff for all states
ρ, ρ ′ such that T r(ρAβ) = T r(ρ ′Aβ) for all β ∈ I then ρ = ρ ′.

Example 1. Prugovečki, 1977: In spinless quantum mechanics, the set
of all spectral projections for position is not informationally complete.
Neither is the set of all spectral projections for momentum, nor even the
union of them.

The {Aη(f )|f is measurable} (or, equivalently {T η(x)|x ∈ �} is
known to be informationally complete in a number of cases:

a) spin-zero massive representations of the Poincaré group (Ali et al.,
1988);

b) mass-zero, arbitrary helicity representations (Brooke and
Schroeck, 1996) of the Poincaré group;

c) the affine group (Healy and Schroeck, 1995);
d) the Heisenberg group (Schroeck, 1996);
e) massive representations (Ali and Prugovečki, 1986; Schroeck,

1996) of the inhomogeneous Galilei group;
f) massive, non-zero spin representations (Brooke and Schroeck, in

preparation) of the Poincaré group are being investigated.
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4) If {Aβ |β ∈ I} is informationally complete then any bounded operator on
H may be written as (a closure of) integrals over the set I (Busch, 1991).

5) When we specialize Aη(f ) to f = χ (	), χ (	) the characteristic function
for the Borel set 	, then

χ (	) = classical localization in 	 ⊂ �,

A(χ (	)) = operator on L2(�) localizing 	 ⊂ �,

Aη(χ (	)) = operator onH localizing in 	 ⊂ �.

These Aη(χ (	)) have several properties (Schroeck, 1996), among
them:

a) If 	 is a compact subset of � then Aη(χ (	)) is a compact operator
with spectrum in [0,1],

b) For all 	 ⊂ �, ‖Aη(χ (	))‖ ≤ µ(	).
Some consequences of this set-up appear in subsequent sections.

6. COMMENT ON A PAPER BY CARMELI,
CASSINELLI, TOIGO, AND VACCHINI

The paper in question is: A complete characterization of phase-space mea-
surements (Carmeli et al., 2004).

The following remark holds also for the case of non-zero spin for either
Galileian or Lorentzian massive one-particle situations, but is simplified to the
case treated in the paper by Carmeli et al. (2004) namely, spin-zero.

In the present formalism, by making use of an isometry (the Wigner trans-
form) from the Hilbert space of square-integrable functions on three-dimensional
space (the irreducible representation space of the canonical commutation
relations [of the Weyl–Heisenberg group]) to a subspace of the Hilbert space
of square-integrable functions on physical six-dimensional phase space, one
may determine the irreducible unitary subrepresentations of the inhomogeneous
Galilei and Lorentz groups arising from a resolution generator via the Wigner
transform (Prugovečki, 1978a,b). See also Ali and Prugovečki (1986a), and
Brooke (1987). In this way, the invariance of the density matrix under rotations
(as posited by Carmeli et al., 2004) results from the invariance of the resolution
generator under rotations. The advantage of the resolution generator view is that
the localization operators on phase space arise naturally within the unified theory
in which the quantum mechanical Hilbert space is constructed directly from the
classical phase space. Moreover, the same construction applies in the relativistic
setting, and furthermore, in the non-zero-spin situations (Ali et al., 1988).

Carmeli et al. (2004) treat spin-zero, massive, one-particle, non-relativistic
quantum mechanics and obtain a characterization of phase-space measurements.
The authors state in Section 3: “In the present, section, we characterize all the
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phase-space measurements of a non-relativistic particle of mass m. For the sake of
simplicity we restrict to the spinless case, the extension to the general case being
straightforward.” To the contrary, it is our experience that the non-zero spin case is
not as straightforward as is often claimed if, as outlined earlier, one is expected to
introduce the spin through phase-space and group theoretic considerations rather
than by ad hoc constructions. They have it backwards from the present point of
view in the sense that the phase space is determined by the kinematic group.
They do not take into account the fact that the spin and the angular momentum
are intertwined. Their proof of their principal result may not be valid in the
relativistic situation where, as was mentioned in Section 5, in the Poincaré case
one should not expect an orthogonality relation with the operator C a constant equal
to 1/d.

7. UNCERTAINTY RELATIONS AND CHANNEL
CAPACITY THEOREM

Consider the measuring instrument (represented by η) to be fixed. Since
Aη(χ (	)) is a compact operator for compact 	 (Schroeck, 1996) let it have
eigenvalues λi with corresponding eigenvectors ψi :

Aη(χ (	))ψi = λiψi, 0 ≤ λi ≤ 1.

One says that ψi is localized in 	 if λi is close to 1 (say λi > 1 − ε). When
localized (in 	) by Aη(χ (	)), ψi will be attenuated by the factor λi . One has from
the earlier equation that

λi = Tr[Aη(χ (	))|ψi〉〈ψi |]

=
∫

	

Tr[T η(x)|ψi〉〈ψi |]dµ(x) ≤ µ(	)

and, in fact, more strongly that∑
i

λi = Tr[Aη(χ (	))] ≤ µ(	)

which is a sharper upper bound on the λi when µ(	) is small, in particular if
µ(	) ≤ 1, in units of h, when the phase space is two-dimensional.

This exemplifies the following version of “the uncertainty relation”: it is
impossible to localize a physical quantum system in an arbitrarily small volume in
phase space (Feynman et al., 1963). The following result is useful to establish this
uncertainty relation. If 	 has a smooth boundary, one can prove (Schroeck, 1996)
that the λi , are clustered near 1 and 0 with almost no λi between ε and 1 − ε,
for some ε > 0. (For example, take ε = 1

n
, where n is an integer bigger than 3.)

If there were N of the λi clustered near 1 then N ≈ � λi near 1 ≤ µ(	) which,
when µ(	) is small, requires N ≤ 1.
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There are a number of examples from the world of classical mechanics
whose analysis is improved by treating it as a quantum mechanical system. Our
first example is the channel capacity theorem: “In a time interval from −T to T
and in a band width of size �, the total number of channels that can pass through
the device is 2�T .” This theorem was originally argued to be true by “modifying”
the signal and its Fourier transform. But we know mathematically, that a non-zero
signal and its Fourier transform may not both have compact supports. Now, if we
take the time-frequency space as a phase space and treat the number of channels as
the number of orthogonal wave functions ψi that can pass though (read as “when
localized in”) the device without severe attenuation, we can obtain the “2�T ”
result from the earlier analysis.

There are many other subjects that can be profitably analyzed with this
phase-space formalism. It may seem strange to consider some of them as quantum
mechanical systems, but that has been done. To list a few: (1) neutron interfer-
ometry, (2) single slit experiments, (3) Stern–Gerlach devices, (4) CT scans, (5)
NMR, (6) MRI, (7) holography, (8) bat echo-location, (9) the olfactory system of
dogs, (10) neural networks in the brain, (11) geologic exploration, (12) clearing
mine fields (which is being investigated by someone at this conference), (13) radar,
etc. Many of these and others have been investigated and results may be found in
Busch et al. (1995) and Schroeck (1996).

To make obvious the point that the phase-space perspective is necessary, take
the system by which one sees. One’s brain creates a display of both the image in
3-space and in color. The phase space of the photon of either positive or negative
helicity is topologically homeomorphic to R

3 × R
+ × S2 where the R

3-factor is
the position space, the R

+-factor is the frequency space, and the S2-factor is the
space of rotations in the momentum space. See Brooke and Schroeck (1996).
Thus, you may place an instrument at any point in configuration space, turn it so
it points in any direction, and then measure the frequency (or wavelength) and
helicity. When one looks in one direction (possibly aided by polarized glasses),
the brain makes measurements in phase space!

8. EFFECT ALGEBRAS

To bring the discussion closer to other of the topics of this conference, we
begin with three definitions.

Definition 2. An operator A in any Hilbert space is an effect if A is self-adjoint,
non-negative (“positive”), and bounded above by 1.

Definition 3. An effect algebra E is a set containing 0 and 1, with a partial
binary operation ⊕ on E satisfying (i) if a, b, and a ⊕ b ∈ E, then b ⊕ a ∈ E and
a ⊕ b = b ⊕ a; (ii) if a, b, c, b ⊕ c, a ⊕ E, then a ⊕ b, (a ⊕ b) ⊕ c ∈ E and
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a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c; (iii) ∀a ∈ E, ∃!a′ ∈ E such that a ⊕ a′ = 1; (iv) if
a ⊕ 1 ∈ E, then a = 0.

The set of all effects in a Hilbert space is an effect algebra. As one will see,
in a Hilbert space it is not the only one.

If A is an effect onH and ρ is any density operator onH, then 0 ≤ Tr(Aρ) ≤ 1.
Thus, one may view Tr(Aρ) as the expected value of A in state ρ.

Definition 4. A positive operator-valued measure (POVM) is a mapping A from
any σ -algebra � on any set � to the non-negative (“positive”) self-adjoint operators
on H such that: (i) A(�) = 1, (and A(φ) = 0), (ii) for every countable collection
{	i} of disjoint measurable sets (	i ∈ �), A(∪i	i) = �iA(	i) in the topology
of weak operator convergence). A projection-valued measure (PVM) is a POVM
in which all A(	i) are projections.

If, in the formalism of quantum mechanics on phase space, one defines

Eη ≡ {Aη(f )|0 ≤ f ≤ 1, f Borel measurable},
F η ≡ {Aη(χ	)|	 Borel measurable on �},

with ⊕ defined by Aη(f1) ⊕ Aη(f2) ≡ Aη(f1 + f2) when f1+f2 ≤1,

[Aη(f )]′ ≡ 1 − Aη(f ), etc. (Schroeck, 2001), then one obtains the following
theorem.

Theorem 2. Fη ⊂ Eη; Eη, F η are effect algebras; Fη generates a POVM which
is informationally complete on H for suitable η.

Remarkably, we have the following:

1) There is no projection in Eη other than 0 and 1 (Schroeck, 2001). Thus,
one does not obtain a PVM from either Eη or Fη.

2) Eη is not only an effect algebra, it is also an interpolation algebra, a
Riesz decomposition algebra, a lattice ordered effect algebra, a distributive
algebra, an MV algebra, and a Heyting algebra. It is not a Boolean algebra
(Schroeck, 2004).

3) Eη is not an orthoalgebra. The property a ∧ a′ = 0 is equivalent to all the
Aη(f )’s being projections, which is ruled out by 1). Included in this are
all “finite quantum logics.” To approximate these projections, one would
need to look at an informationally complete set of the Aη(f )’s for the f ’s
being just measurable real-valued functions.

4) The η involved is a wave function for the measuring instrument. It is an
essential ingredient to achieve a true quantum measurement.
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5) According to philosophers and logicians, the logic by which quantum
computers should be designed is an MV algebra that is also a Heyting
algebra. The remarks above justify this assertion.

6) Taking the Aη(f )s as the only realistically allowed operators in the theory
of quantum computers, then the theory based on projections is only an
approximation to reality. (Here “approximation” is based on the fact that
the Aη(f )’s are informationally complete.) One must have, at a minimum,
a POVM that is not a PVM. Furthermore, that POVM must reflect phase-
space variables in some sense. When one makes a finite-dimensional
approximation of the Hilbert space to carry out numerical computations,
one must make an appropriate choice of a POVM. The same can be said
of any numerical computations in quantum theory.

7) Given that the Aη(f )s are the only realistically allowed operators, one may
re-analyze the axioms of “quantum computation” and their consequences
under which the “results” of quantum computation are derived. For ex-
ample, whether Shor’s algorithm for factoring large numbers is indeed
implementable in any approximate sense should be investigated.

9. CONCLUSION

Any kinematical group may be analyzed in the fashion of quantum mechanics
on phase space. Quantum mechanical measurement usually leads to a POVM that
is not a PVM, a direct consequence of an inherent spread of the wave function
of the particles being measured. The effects of decoherence and measurement
inaccuracy are in addition to this inherent imprecision. It is our view that the
methods of quantum mechanics on phase space must be taken into account in
order to express predictions and to analyze experiments in quantum theory; in
particular, in order to decide whether or not quantum computers are physically
realizable within this framework.
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